

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 1 of 10

Embedded LVC Training:
A Distributed Training Architecture for Live Platforms

Jaclyn Hoke, Jason Wenger, Brian Wolford

Rockwell Collins, Inc.
Cedar Rapids, IA

jahoke@rockwellcollins.com, jcwenger@rockwellcollins.com, brwolfor@rockwellcollins.com

ABSTRACT

Given the reductions in Department of Defense budgets it is imperative that every dollar spent on training
warfighters be used in a cost efficient manner. One approach for cost effective training is distributed training
exercises that include live, virtual, and constructive participants, but injecting the training functionality into live
aircraft platforms is challenging. Many of the current architectures and approaches for presenting the information to
a pilot require modifications to the Operational Flight Program (OFP) software. This is an expensive approach that
can be challenging and time consuming to certify for flight safety. Ongoing research and development in embedding
distributed training functionality within flight hardware has led to a new architecture that is presented in this paper.
This research system demonstrates a partitioned architecture for embedded training that interfaces with the OFP
through a single, standards based hook, allowing training functionality to be injected into flight displays in a manner
with a credible path to certification.

In addition to illustrating the architecture, this paper explains how the approach provides the capability for the end
user to train with systems and sensors that are not physically present on the platform, such as the multiple radar
simulators currently integrated. These onboard simulated sensors and systems consume pilot inputs as well as
participant state data and interactions sent over a datalink, enabling embedded distributed training on live platforms
in exercises that can contain combinations of live, virtual and constructive (LVC) participants. The results of test
bench experiments are provided, and the planned flight test experiments that will be conducted during LVC
exercises are described. Finally, the paper discusses research that will leverage the system, steps to further mature
the proposed architecture, and the foreseeable challenges with fielding this approach to enabling embedded training.

ABOUT THE AUTHORS

Mrs. Jaclyn Hoke is a Senior Systems Engineer with the Rockwell Collins Advanced Technology Center System
Virtualization Group. Jaclyn has been with Rockwell Collins for five years. Her primary background is in
developing software for image processing applications, but the last two years have been focused on maturing
technologies and developing architectures for Live Virtual Constructive systems. Jaclyn has a Bachelors’ Degree in
Applied Mathematics, Master’s Degree in Electrical and Computer Engineering and is currently pursuing her
Doctorate in Electrical and Computer Engineering.

Mr. Jason Wenger is a Senior Systems Engineer with the ATC Systems Virtualization Group of Rockwell Collins,
Inc. Jason has been with Rockwell Collins for nine years and has worked in Modeling and Simulation throughout
the span of his career. He has been involved in modification, instrumentation, and flight test efforts on platforms
ranging from Beechcraft Bonanza, Bombardier M145 and Global Express, to Boeing 727, 757, and C-135
Stratolifter. Jason has a Masters’ Degree in Electrical and Computer Engineering with a focus on software
engineering from the University of Iowa.

Mr. Brian Wolford is a Senior Software Engineer with the Rockwell Collins Advanced Technology Center
Systems Virtualization Group. Brian has been with Rockwell Collins for seven years. His primary background is in
embedded software development for various applications. This includes Live Virtual Constructive applications, and
DO-178B qualified avionics software. His experience with Live Virtual Constructive includes applications for
distributed pilot and soldier training, insertion of distributed training protocols into embedded environments, and
simulation frameworks. He has avionics applications experience in a wide range of areas including: primary flight
instruments, situational awareness displays, flight management systems, and synthetic vision. Brian has a Masters’
Degree in Systems Engineering and a Bachelors’ Degree in Computer Engineering.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 2 of 10

Embedded LVC Training:
A Distributed Training Architecture for Live Platforms

Jaclyn Hoke, Jason Wenger, Brian Wolford

Rockwell Collins, Inc.
Cedar Rapids, IA

jahoke@rockwellcollins.com, jcwenger@rockwellcollins.com, brwolfor@rockwellcollins.com

INTRODUCTION

In 1997 the U.S. Air Force identified key shortfalls in
the ability to safely and affordably train aircrew,
including safety considerations, mission complexity,
airspace and range restrictions, and real world
commitment and costs (U.S. Air Force, 1997). Since
then, various organizations have invested in
technologies to mitigate these training gaps. In 2003,
the U.S. Air Force Distributed Mission Operations
(DMO) Concept of Operations (CONOPS) identified
the objective to “train warfighters as they expect to
fight; maintain combat readiness at home or deployed;
conduct mission rehearsal in an environment as
operationally realistic as necessary; and provide
support to operations” through a combination of real-
world operational systems, simulators, and constructive
simulations (U.S. Air Force, 2003). There are now
several centers and networks currently online,
including the Distributed Mission Operation Network,
Air Reserve Component Network, Distributed Mission
Operations Center and the Distributed Training
Operations Center. Unfortunately, the reduction in
Department of Defense budgets leading to reduced
flying hours and the struggle of the existing ranges to
support new combat capabilities mean that many
aircrew are still unable to achieve training minimums.

In fact, a 2011 RAND report clearly states that
shrinking resources and expanding mission
requirements are jeopardizing the ability to meet
proficiency standards to accomplish wartime missions.
The report also cautions that reducing the number of
flight hours and increasing the number of simulated
missions only shifts the expense to the simulator
environment because the value (fidelity) of training
must be maintained (Ausink, Taylor, Beigelow &
Brancato, 2011). Data compiled by RAND indicates
that the high costs of training are largely driven by the
need to field red forces and is further compounded by
the need to ensure that these red forces are effective
training adversaries. For the F-22 alone, it is estimated
that it would cost an additional $63 million for T-38
aggressors, $132 million for F-16 aggressors or $593
million for F-22 aggressors each year above what is
currently spent just to meet the current training

requirements (Ausink, Taylor, Beigelow & Brancato,
2011).

Experts see increased use of simulators; the DMO; and
live, virtual, constructive (LVC) training as a means for
reducing this gap; in addition the RAND report
concludes that “in the long run, development of the
LVC ability to inject simulated and constructive threats
into live aircraft may be the only fiscally responsible
approach to improving training.” Whereas significant
research in the last 4-6 years has focused on the
integration challenges of LVC, such as datalinks and
cross domain solutions for training with allied forces,
the ability to achieve the “injection” of virtual and
constructive entities into live platforms is still a
relatively new challenge for the research community.
The Combat Air Force LVC Pilot Project is currently
in the process of making significant modifications to
the Operations Flight Programs (OFPs) of several F-15
and F/A-18 aircraft (Sidor, 2012). While significant
OFP upgrades will most likely prove to be an effective
solution, it is likely that it will also prove to be an
expensive solution when retrofitting currently fielded
aircraft and re-certifying them for flight.

Ongoing research and development in embedding
distributed training functionality within flight hardware
has led to an alternative approach for injecting virtual
and constructive entities into live avionics displays.
The research system demonstrates a partitioned
architecture for embedded training that interfaces with
the OFP through a single, Aeronautical Radio,
Incorporated (ARINC) standards based hook. It
presents the capability to train with systems and
sensors not physically present on the platform and the
ability to fully participate in Live Virtual Constructive
(LVC) training exercises. The details of this
architecture are presented in this paper, along with a
description of the research that leverages the system
and the next steps to further mature the architecture.

ARCHITECTURE

Research Architecture Philosophy

Several major goals influenced the research system
design:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 3 of 10

1. Graceful degradation during failure
2. Minimal modification to OFP
3. Federated architecture

Safety of flight concerns present a need to separate the
level of criticality of the research training functions as
completely as possible from functions needed for basic
aviation and navigation. As these research functions
are being developed without the full rigor of a formal
certification process, care must be taken to ensure that
failures of research functions cannot interfere with
flight critical symbology. To this end, a partitioned
architecture was developed. A clear separation of
training function from flight safety function was made
in software, in hardware, and in display formats.

The training system architecture provides three levels
of reversion for research aircraft safety of flight. While
in the training mode, large areas of the displays contain
content from the research training function with very
low level of criticality. Safety of flight is ensured
through reserved portions of the displays that are kept
for primary flight instruments, and which are presented
through a processing chain derived from a certified
baseline. In the event of a software fault within the
prototype training function, these reserved areas
continue to operate normally while the remainder of
the display is blanked. In the event that a fault occurs,
a dedicated line key selects a reversionary mode
featuring a full screen standby format that is again
derived from a certified baseline. Finally, a standalone
set of standby instruments is physically and electrically
separated from the research displays within the cockpit.

Two 6”x8” Multi-Function Displays (MFDs), mounted
in portrait orientation, were used in the final
architecture. The selected displays are standard
production units for a military rotary wing flight deck.
Each MFD runs a research-tailored OFP which was
derived with minimal modification from an existing
certified flight deck. The OFP application consists of a
processing block which communicates with aircraft
data sources and performs source selection and filtering
for a minimal baseline set of flight parameters regarded
critical, such as aircraft attitude, speeds, position, etc.
A primary flight display format was taken from a
certified baseline, again with minimal modification,
and designated as a standby format. When this format
is active, system partitioning ensures that no training
function symbology is permitted to be rendered
anywhere on the MFD.

The primary modification to the certified baseline
occurred within the window management system.
When the training system applications are active, a line
select key on the standby format allows the pilot to

select the training format. When the training format is
active, a portion of each MFD display area is reserved
for a compressed version of the standby format, while
the remainder of the display is available for
presentation of training formats.

As the training format symbology is generated by
software with a lower level of criticality, partitioning
within the rendering subsystem again ensures that no
training function symbology is permitted to be
rendered within the dedicated area of the screen
reserved for the compressed standby format. In
addition, to prevent a hazardous or misleading
presentation to the pilot, several restrictions on the
training function applications are enforced through
development practice. No functions that present
attitude data to the pilot are permitted to be
implemented within the training format processing
chain. Speed, altitude and position data are permitted
in the context of a training function, such as a target
closure speed, or ownship position relative to bullseye
on simulated radar, but presentation of this data is not
allowed to be visually similar to a primary instrument.

Hardware Architecture

System Function Allocation
Three major computing and display devices provide the
computing resources necessary for the research flight
deck. Two MFDs provide a display surface and a high
assurance data path for critical flight data, while a
Dzus-mount mission processor and data transfer unit
(MP/DTU) provides training functions. The processing
required to perform training functions on the research
flight deck is hosted on a 7448 processor card installed
within the MP/DTU. Two additional mission
processors are available, one within each MFD, for
future expansion, and are currently untasked. This
architecture is illustrated in Figure 1. System
Architecture

The entire system is installed in two configurations.
First, the system can be operated in a simulator, where
control inputs are provided to a flight model and
outside viewing is provided by an image generator and
screen. Second, the system is installed in an Aero L-29
Delfín jet trainer. While not matching the performance
of a modern fighter, its speed and dynamics still
represent a stepping stone in that direction.
Additionally, this aircraft provides an excellent cost per
hour to operate. For this reason, it is being used in our
research as a proxy for an introductory jet trainer. For
the purposes of this section, the live aircraft
architecture will be illustrated. Differences in the
simulator configuration will be discussed later in the
section titled “Testing”.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 4 of 10

P
ilo

t L
ef

t M
FD

 (M
FD

 1
)

Display
Processor

Mission
Processor

H
ea

lth
 M

on
ito

r

M
FD

 D
is

pl
ay

 M
an

ag
er

H
ea

lth
 M

on
ito

r

IOC Host

Dual Avionics System LAN

COTS Processor

P
ilo

t R
ig

ht
 M

FD
 (M

FD
 2

)

M
FD

 D
is

pl
ay

 M
an

ag
er

H
ea

lth
 M

on
ito

r

H
ea

lth
 M

on
ito

r

Display
Processor

Mission
Processor

GPS/
ADAHRS

DatalinkCOTS 1Gb Ethernet

Controls

D
TU

H
ea

lth
 M

on
ito

r

S
im

ul
at

io
n

E
nv

ir
on

m
en

t

S
im

ul
at

ed
 R

A
D

A
R

A
R

IN
C

 6
15

 D
at

al
oa

d

Mission
Processor

RS-422RS-422

Research
PC

Lo
gg

er

S
ym

bo
l

G
en

er
at

or

 Figure 1. System Architecture

The system’s source for flight critical data is a
lightweight Air Data Attitude Heading Reference
System (ADAHRS) originally intended for Unmanned
Aerial Vehicle (UAV) applications. It produces an RS-
422 serial data stream that is bused to both MFDs, the
training mission processor, and components of the
research infrastructure performing data logger and a
Heads-Up Display (HUD) symbology generator
functions. The cost and form factor of conventional
optics HUDs prohibit their use in the research aircraft.
In its place, a daylight readable LCD display is
installed at the center of the glareshield, and functions
as a HUD repeater device. This repeater display is
necessarily opaque and non-conformal.

All interactions between the MFDs and the training
application hosted on the Mission Processors are
arbitrated by an ARINC Graphics Server (AGS)
application which runs on the MFD Display Manager
Partition on each MFD. The AGS application is
responsible to ensure partitioned access to the display
surface itself. Layer and window management within
the AGS application and its configuration files
provides the rules to ensure that the training function is
properly partitioned from critical flight symbology;

that the training application is allowed to present
displays to the pilot when conditions are proper, and
more importantly to ensure that training symbology can
never corrupt or obscure symbology of higher level of
criticality. This single, open, ARINC 661 standard-
based hook into the OFP allows a flexible, lower cost
path to integrating a training function as compared to a
traditional tightly-coupled OFP integration, while the
partitioning inherent in the system allows the training
application to be developed to standards consistent
with the lower criticality of the training function.

Within the cockpit, communications among the MFDs
and the training mission processors is carried on a Dual
Avionics System LAN (ASL), an ARINC 664 based
Ethernet network. As this Ethernet network carries
only the remainder of the training data that is not
critical for flight, it is permitted to contain a mix of
hardened Avionics Ethernet and COTS devices.

Training system control inputs are provided in two
ways. Each MFD’s display is surrounded on all four
edges by a total of 30 line keys. Of these keys, 21 are
available for use with the training format when it is
active. Additionally, a simulated F/A-18 control grip
and throttle are installed and an interface board
converts the digital and analog signals from the Hands
On Throttle and Stick (HOTAS) controls on these
devices and provides switch state via the aircraft’s
Ethernet network.

Finally, a dedicated training datalink is connected via a
second Ethernet interface on the MP/DTU. As datalink
requirements often vary depending on the training
system and site, we have architected for datalink
agility. During the course of our research, we have
integrated multiple datalink systems, operating on
diverse radios, waveforms, bandwidths, and frequency
bands, with link capabilities varying from full TCP/IP
connectivity to narrowband, time-slice allocated, fixed-
sized packets. These various datalinks have been
integrated in the aircraft through one of two installation
systems. First, Ethernet and power connections have
been brought to an access cover location on the aircraft
belly, allowing for installation of various datalinks and
their matching antennas, each system pre-mounted on
one of a set of interchangeable cover plates. Second, a
set of engineered launcher rail adaptors allow fitting of
either single or paired training pods conforming to the
AIM-9 form factor on the aircraft’s original under-
wing pylons.

Deployment Considerations
Given the research intent of our training system, the
processing resources are permanently installed in
embedded training form. Migrating the mission

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 5 of 10

processing functions, datalink, and in some cases,
ADAHRS function, to a removable embedded training
pod may enable a more flexible application of this
system architecture to other aircraft. Additionally, in a
system envisioned to provide training for multiple
aircraft or roles, specialized hardware may be needed
to accurately simulate systems used only in certain
training curriculums. In this case, allocation of that
specialized hardware into only a limited set of training
pods would allow more flexible use of training
equipment.

The use of a partitioned, standards-based ARINC 661
remote application architecture to integrate the training
applications into the OFP enables this functionality to
be allocated to an external pod. This contrasts with the
allocation of the training function in a traditional
tightly coupled OFP architecture, which could not be
offloaded to a removable pod without risk to critical
flight systems.

Software Architecture

Training Function Software Architecture
The aircraft systems simulation is in the form of a
simulation kernel that loads and manages execution of
a configurable collection of plugins, termed Simulation
Elements (SEs). On the aircraft, each of these SEs
simulates a device or system that would be present on
the aircraft for which training is being performed. For
example, a Fire Control Computer SE maintains
information about aircraft kinematics, master mode and
submodes, targeting, steerpoints, etc. A separate
Weapons Inventory SE records the simulated stores
loadout of the training aircraft. Another pair of SEs
perform computations for prelaunch munition cueing
and postlaunch simulated munition flyout. The
modular nature of these Simulation Elements allows
for selection of desired training function from a pool of
available, interoperable training components.

All of these individual SEs communicate by publishing
and subscribing variables on a Virtual Data Network
(VDN). The VDN is the datastore for all training data
that would be distributed on physical buses in the
actual aircraft for which training is being performed.
The VDN also carries all data about live, virtual, or
constructive entities that have either been brought in
from or will be published out onto the training datalink.
All VDN state variables and distributed simulation data
is available to SEs within the MP/DTU, as well as on
the training Ethernet network through the use of a
network VDN library.

One noteworthy feature of this architecture is the
mechanism used to integrate the live aircraft state data

needed for the simulation. All SEs used in the live
aircraft are developed originally in a second instance of
the system operated as a virtual simulator. In this case,
a number of SEs exist to provide the basic flying model
of the aircraft itself. For example a set of SEs which
include Force and Moments, Equations of Motion,
Aerodynamics, and Ground Model SEs simulate the
virtual aircraft’s interactions with its environment,
while another set including Hydraulic, Electrical,
Engine, and Fuel System SEs simulate the state of the
aircraft itself. A data dictionary of standard bus values
is populated from these SEs.

When the training function is run in the live aircraft, all
these SEs are configured out of the system, and in their
place, an ADAHRS interface SE is run which parses
the RS-422 data stream. This data stream contains
sensed state data and publishes the same set of
variables that the above-mentioned SEs would publish.
Thus, this SE is not so much a simulation element as a
data bridge. In this case, the difference is minimal. In
this way, both the data dictionary and the training SEs
themselves are in fact identical between the virtual
simulator and the live aircraft, with the only actual
difference between the systems being the SEs used to
either simulate or interface the aircraft state data. In
this way, the difficulty of maintaining identical
behavior between the live and virtual training assets is
dramatically reduced.

Currently Supported Functionality
A number of SEs simulate aircraft functions in the
training flight deck. As the primary areas of training
research we have performed are close air support and
air to air intercept operations, a matching set of
simulation SEs have been implemented. The training
SEs are as follows:

• FCC
• Weapons Inventory
• FaacCueingIntf
• FaacFlyoutIntf
• MFD
• VmtsRadarIntf
• HudIgInterface
• MfdDisplay661

FCC: The Fire Control Computer is a Model SE whose
outputs are information about steerpoints, targets,
master mode and submodes, and sensor of interest of
the Flight Deck. Its control inputs include such things
as mode selection and HOTAS control switch inputs.

Weapons Inventory: The Weapons Inventory is a
Model SE whose outputs are information about
remaining stores available for launch, selected

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 6 of 10

munition, and configurations of the specified
munitions. For example, air to ground munitions can
be launched with high drag / low drag setting, varying
number of munitions dropped in a ripple/salvo
configuration, etc. By contrast, air to air munitions
record caged/uncaged, slave or boresight launch, etc.
The processing function of the Weapons Inventory
provides very generic weapon flyout and cueing
models for situations when more specific SEs, such as
the FaacCueingIntf and FaacFlyoutIntf described
below, are not available.

FaacCueingIntf: The FAAC Cueing Interface is a
Model SE that is a wrapper around library code
provided by FAAC Incorporated. This is a
reapplication of code traditionally incorporated into
actual military OFPs, designed to provide prelaunch
cueing in real operations (FAAC Inc.). In this case, the
true weapon models have been replaced with
representative unclassified models.

FaacFlyoutIntf: The FAAC Flyout Interface is a Model
SE that provides a real time simulation of post-launch
munition flyouts. This SE takes distributed simulation
entity data from the VDN, which as discussed above, is
consistent with the larger distributed simulation
exercise, and provides that data to the flyout model in
order to allow simulation of munition active guidance
based on post-launch target maneuvering. Post-launch
datalink support messages are also simulated, if
applicable. This is again a wrapper around a third
party library that is taken from a fielded non-drop
range scoring system, with the high fidelity models
replaced in our flight deck by representative
unclassified models. The output of this model is the
position and behavior of the simulated munition during
its flyout. This data is pushed into the VDN entity
datastore, and is distributed out onto the simulation
datalink. In this way, Plan View Display maps at the
instructor station can visualize the flight of the
munition, and targets can, if applicable to the mission
scenario, respond with appropriate countering
behaviors during the munitions’ flight.

MFD: The MFD SE is a Model SE that maintains
information about the internal state of the MFD.
Control inputs for this SE come from the Bezel SE, and
are processed to determine the MFD state, such as page
selection, configurable display settings such as overlay
layers or optional data blocks. Two instances of this
SE run, and model the internal state of the left and right
MFDs. .

VmtsRadarIntf: The VMTS Radar Interface is a Model
SE that simulates the function of an air-to-air fire
control radar. The SE collects entity data from the

VDN and passes this data to a set of radar simulation
processes also running on the Mission Processor,
which simulate the navigation, ground mapping, and
air to air fire control capabilities of a representative
fielded fighter radar. The output of those processes is a
set processed of radar returns. These returns are then
published by the SE, and are used by the
HudIgInterface and MFDDisplay to present targeting
and situation awareness data to the pilot. Control
inputs to this SE include HOTAS control inputs and
bezel key presses from the MFDs.

HudIgInterface: The HUD Image Generator Interface
is a View SE that collects aircraft, target, and other
state data and generates a CIGI data stream which
wraps an IG-specific symbology packet format. These
packets are then packaged and delivered to the IG,
providing the information necessary to render the HUD
display in a virtual simulator, or the HUD repeater
display in the live aircraft simulator.

MFDDisplay661: The MFD Display 661 SE is a View
SE that collects information from a wide variety of
Model SEs and generates an ARINC 661 data stream
which drives the AGS in the physical MFD in the live
flight deck. In this case, due to the tight coupling of
display and control data required by the ARINC 661
protocol this SE also incorporates the behaviors of a
Controller SE, by processing bezel presses, and
generating control commands which are sent to other
SEs. A stores page allows display and selection of
loaded munitions. A Horizontal Situation Indicator
(HSI) format is available, which includes a
presentation of waypoints and navaids recorded in an
airborne simulation navigation database. Additionally,
track files of datalinked blue force positions and sensed
enemy positions collected from the VmtsRadarIntf are
also provided on the HSI map. A radar format is
available, which presents a simulated fire control radar
scope. Finally, a training system status format is
available, which displays real time information about
the aircraft’s ADAHRS health, datalink connectivity,
and other health monitoring information.

Training Software Implementation Pattern
The training functions are implemented in software as
a model/view/controller pattern. As an example, stores
management will be detailed.

The Model is the Weapons Inventory SE. It loads a
configuration file at startup that identifies the number
of stores locations (pylons) on the simulated aircraft,
and populates those stores with a configuration-
selected default loadout. Through the duration of the
flight, it manages changes to the inventory such as
changes to the set of selected stores for launch, modes

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 7 of 10

and settings of munitions, the removal of launched
munitions from wing stores, and tracking launched
stores in an airborne pool until the end of their flights.
All of these settings are recorded in VDN variables
published by the Weapons Inventory SE.

The View is a component of the MFD Display SE.
The view presented by this SE collects and displays
information from many models. In this case the View
of interest is the Stores Management System (SMS)
page. This SE subscribes to the variables published by
the Weapons Inventory SE, and uses these variables to
produce the display presented on the MFD. In this
case, the necessary data is in the form of a set of
runtime parameters of ARINC 661 widgets. The
MP/DTU then sends these parameters via ARINC 661
protocol to an ARINC Graphics Server (AGS) process
which runs on the MFD. With these parameters, along
with a symbology definition file, the AGS has all the
information necessary to render the visual presentation
of the SMS page.

The Controller is a component of the Bezel SE. Bezel
key presses are sent from the MFD in the return data of
the ARINC 661 data stream. However, the MFD itself
knows only the number of a bezel key, and not its
semantic meaning. The Bezel SE subscribes to a
number of variables, including the active page on the
MFD, and information about bezel key labels, to turn
this simple key number into a semantically meaningful
request. The Bezel SE then sends this request to the
Weapons Inventory SE, completing the control loop.

While these interfaces are internal to the software and
are tailored to the specific functionality in question, the
interfaces between model, view, and controller are well
defined and provide a very clean partitioning of
function. Thus, it is possible to replace components of
the pattern with alternate implementations depending
on research needs. For example, a replacement View
implemented as an OpenGL window and a replacement
Controller accepting input from a touch panel interface
have been created, allowing a very lightweight but low
fidelity virtual simulator to be added to the training
system when higher participant count is needed.

Finally, due to the segregation of processing
responsibility in the Model/View/Controller pattern, it
is possible to run multiple instances of those functions
within a single simulator system for debugging,
demonstration, or monitoring purposes. For example, a
virtual simulator might be configured to run the
Weapons Inventory, MFD Display, and Bezel SEs as
would normally be run in the live aircraft. This
provides display presentation and interaction to the
pilot on the physical display installed in the virtual

simulator’s main instrument panel. In addition, a
repeater display for an instructor station may be added
simply by adding the aforementioned OpenGL display
and touchscreen controller SEs to that configuration.
Due to the segregation of functions, there is no
software configuration overhead required to extend the
system to provide these duplicate displays.

Distributed Simulation Over the Datalink
A final noteworthy component of the simulation
architecture is the connection to the datalink. In the
live aircraft, a separate Ethernet interface is dedicated
to the datalink. This allows segregation of data flows
within the flight deck from data flows intended for
distribution. The primary data flow over the datalink is
information about the state of entities, munitions, and
interactions in the distributed exercise, and the live
aircraft’s mission processor communicates externally
using either standard Distributed Interactive Simulation
(DIS) datagrams or via a High Level Architecture
(HLA) Run-Time Infrastructure (RTI). The research
architecture currently utilizes Real-time Platform
Reference Federation Object Model (RPR-FOM) 1.0
and HLA 1.3, but has the capability to support other
FOMs and HLA standards. For the purposes of these
research and development efforts, the primary
messages of interest are entity updates, fire and
detonation interactions, emitter and jammer updates,
and signals.

As might be expected, the network infrastructure is
complicated and relies on a combination of several
protocols, bridges, and translators. But an important
feature of the overall architecture is that, once all these
bridges and translators are navigated, there is a single,
completely connected, HLA/DIS network connecting
the various ground sites, which is bridged through the
datalink, all the way to the flight deck itself. In this
way, the live aircraft is connected to the distributed
exercise in a manner functionally indistinguishable
from a traditional virtual simulator participant.

The distributed simulation connection for the mission
processor on the live aircraft is performed by an SE
provided by the simulation environment infrastructure.
This is not considered a “training” SE because it does
not simulate an aircraft or OFP function. This SE is in
essence a protocol bridge that cross-fills between the
VDN entity list and the distributed simulation protocol.
Depending on the environment needed, this SE
interoperates with DIS or HLA. A TENA interface is
also available but has not yet been used in a training
study. Three separate SEs provide connection to these
three protocols, but the SEs share a large pool of
common source code, differing only in the protocol
interface portion itself.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 8 of 10

Incoming entity data from the exercise is processed by
this SE, and an equivalent persistent entity is created in
the VDN datastore. Subsequent data is then matched
up against the existing entity in the VDN, and
incremental updates are applied. Conversely, local
entities created by the exercise, such as ownship
position or locally simulated munitions in flight are
identified, correlated, and published into the distributed
simulation exercise by this SE. Equivalent paths are in
place for Emitters, signals and other distributed entity
persistent objects.

External events such as fire, detonation, collision, and
simulation control are received from the distributed
federation and are in turn converted to a common
format and broadcast to various SEs within the
exercise, via a configurable distribution list. SEs can
also publish a locally generated event, which is
likewise distributed to interested local SEs, and then
converted and forwarded to the datalink.

When the simulator is used as a virtual participant, the
simulator is directly connected to the larger distributed
simulation exercise and participates as a standard HLA
or DIS player. Likewise, in the live aircraft, the
network between the Mission Processor and airborne
interface side of the datalink also carries HLA or DIS
traffic. Due to the ready access to this standard
protocol network within the live flight deck, it is
possible to easily embed additional training functions,
such as embedded Semi-Automated Forces (SAF) or
Plan View Display for instructor/safety pilot use, into
the live trainer.

Where the datalink connects to the live aircraft’s
airborne DIS/HLA network, however, the data is
bridged through a protocol translator application that
converts the standard distributed simulation data into a
set of over-the-air packets that is tailored for the
specific datalink and waveform selected.

Depending on the features and/or constraints of the
installed datalink, these protocol translator applications
perform different functions. For example, one
application was implemented to pair with a time-sliced
datalink with a fixed packet size limit, and provided
message prioritization and rate limiting, and packet
fragmentation and reassembly. By contrast, a different
application was built to pair with a datalink without
any intrinsic provision in its protocol for reliable or
near-reliable delivery. This application provided a
buffer for storage and retransmission of a designated
subset of messages which demanded reliable delivery.

At the ground side of the datalink, a matching instance
of the same protocol translator application bridges the
tailored datalink protocol back to a standard protocol

used in distributed simulation. This is then distributed
over the exercise LAN or WAN, and is sometimes
converted to other distributed simulation protocols
using a broker application. This distributed simulation
networking is performed using methods well known
within the field.

TESTING

Bench Testing

The laboratory environment consisted of an identical
set of display hardware to the flight test aircraft, with
accommodations for simulation of the sensors normally
present on the aircraft. A simulated GPS/INS was
created to feed the MFD application position and
attitude information. Also, the training simulation
environment was setup to connect to the MFD over the
ARINC 661 protocol using the same Internet Protocol
(IP) ports and addresses as equipment on the aircraft.
In this way the laboratory environment was identical to
the aircraft, and no changes to software were required
when moving between locations.

Bench testing consisted of engineering verification of
ARINC 661 pages displayed on the MFD. Functional
unit tests, including connectivity, configuration, and
filtering tests, were conducted utilizing the simulation
environment in the lab. The MFD pages were
exercised throughout aircraft operating and
performance limits, as well loading of the training
functionality with LVC entities and data.

The tests verified that the user can enter and exit the
training mode and that the display reversions occurred
properly during failure situations. It determined that the
ADAHRS interface SE was correctly parsing the
simulated RS-422 data stream to drive the standby
instruments. The tests also verified that the training
functionality of the various pages reacted to control
inputs. The stores page displayed the correct munitions
and allowed munitions to be selected and fired. The
HSI page presented the waypoints and navaids for the
preplanned route and the track files for other
networked participants. The radar modes function
correctly, allowing the radar page to present targeting
information to the pilot that can be used to lock
constructive participants in the distributed training
exercise.

Flight Test Aircraft Integration

As the existing aircraft instruments were removed to
provide room for the research MFDs, an additional
dissimilar standby instrument system is installed in the
experimental cockpit, and has no data connection in
common with the experimental displays. Power for

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 9 of 10

this standby system is common only at the aircraft bus
level, and an additional internal battery provides
continued operation in the case of loss of bus power.

A simulated F-18 control grip and throttle grip was
fitted in place of the aircraft’s original stick grip and
throttle grip, through engineered adapters that mounted
the grips to the aircraft’s control column and throttle
arm in place of the aircraft’s original equipment. As
the flight test aircraft is a single-engine aircraft, the left
and right throttle grip of the F-18 controls were
mounted together to a single bracket and do not move
independently. Existing aircraft switches on the stick
and throttle were relocated or assigned to equivalent
HOTAS function switches on the training grips. The
training flight deck is show in Figure 2.

Figure 2. Trainer cockpit with MFDs Installed

A debug connector was installed on the main
instrument panel that allows diagnostic connection to
the aircraft systems while on the ground. Connections
available include serial debug ports on the MFDs,
connection to the training system Ethernet network,
and strapping connections required to enable dataload.
An interface cable can be attached when the aircraft is
on the ground, and when the aircraft is airborne, the
connector is covered by a dust cap. In this
configuration, the strapping pins are open, and dataload
is inhibited.

After completing installation of the hardware into the
research aircraft an initial flight test was conducted,
attempting to provide engineering verification of basic
avionics functionality and basic training functionality.
The test verified that the pilot was able enter and exit

the training mode and that the display reversions
occurred properly during failure situations. It verified
that the training functionality in several of the pages
reacted to control inputs. The stores page displayed the
correct munitions and allowed munitions to be selected
and fired. The HSI page presented the waypoints and
navaids for the preplanned route. Since there were no
additional participants, no track files were displayed
and the test could not verify that targeting capabilities
were functioning. The pilot was able to enter the radar
page and determine that it was running.

Due to several circumstances, the ADAHRS did not
initialize correctly and could not attain GPS lock.
While the test indicated that the RS-422 data was being
parsed correctly, the lack of GPS lock meant the full
functionality of the positional displays could not be
verified.

NEXT STEPS

Flight Tests

Once further verification of the basic avionics and
training functionality is complete, flight tests will be
extended to incorporate LVC entities. Phase 1 will
consist of a single live aircraft with virtual wingmen
against a combination of virtual and constructive
aggressor forces in air-to-air intercept scenarios, as
well as constructive targets and additional participants
in air-to-ground close air support scenarios. Phase 2
will add additional virtual and constructive entities as
well as an additional live wingman, again in both air-
to-air intercept and air-to-ground close air support
scenarios. The potential third phase will examine
incorporating the second live aircraft as a red force in
air-to-air engagement scenarios, pending a full risk
assessment. The flight test will be conducted under
internal funding sources. Once the phased assessment
of the LVC capabilities is complete, the architecture
will be utilized to examine the human factors
implications of pilots participating in these distributed
training exercises.

Future Functionality

The first area of functionality due for future integration
is a more complete Electronic Warfare (EW) and Radar
Warning Receiver (RWR) system. The current system
lacks any meaningful RWR capabilities. Integration of
an existing RWR simulator is planned to address this
gap. Existing VDN emitter data will be used as an
input for this model.

With a longer outlook, the modular, “plug-in” nature of
the simulation environment itself supports the concept
of selecting training functions for a specific student

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12385 Page 10 of 10

based on a “menu” of available simulation capabilities.
As an example, different radar simulators could be
integrated, such that a pilot training for transition to a
naval aviation interceptor role might use the Virtual
Mission Training System (VMTS) baseline radar,
which is very similar to an F-18 radar, whereas a pilot
training for transition to the F-35 might train with a
radar simulator representative of the capabilities of that
particular aircraft. This possibility of tailoring the
flight deck on a per-curriculum basis while using a
baseline pool of avionics and training aircraft
represents a dramatic change from traditional flight
training.

Additionally, sensors and missions widely removed
from the currently implemented training needs may
also be readily inserted into the flight deck. Examples
include forward looking infrared (FLIR) or Synthetic
Aperture Radar (SAR) sensor simulation, which can be
provided as a merged video input to the MFDs, or
substitution of different model SEs, in order to provide
training for dramatically different roles such as Anti-
Submarine Warfare or Electronic Warfare.

CONCLUSIONS

This paper presented a new architecture for injecting
virtual and constructive entities into live aircraft. For
platforms where the Operational Flight Program (OFP)
development is not complete, the proposed architecture
could be easily accommodated. Retrofitting currently
fielded platforms to accommodate the architecture
presents more of a problem, as it would require the
cooperation of the aircraft manufacturer that originally
developed the OFP.

The architecture provides the capability to train with
systems and sensors not physically present on the
platform. It is capable of utilizing pilot inputs as well
as participant state data and interactions sent over a
datalink, enabling embedded distributed training on
live platforms in LVC exercises. The system has been
installed in an experimental aircraft, with flight tests
planned for the next several months. The architecture
was developed under internal funds, and the system
verification flight tests will also be conducted using
internal funding resources.

REFERENCES

Ausink, J. A., Taylor, W.W., Bigelow, J. H., &
Brancato, K. (2011). Investment Strategies for
Improving Fifth-Generation Fighter Training. RAND
Corporation, Santa Monica, CA. Retrieved from
http://www.rand.org/pubs/technical_reports/TR871.

FAAC, Inc. ZAP Missile Launch Envelope. Retrieved
from http://www.faac.com/zap.html

Sidor, G. (2012, March 28). CAF LVC Pilot Project
Overview. (Briefing)

U.S. Air Force, (1997, October 8). Operational
Requirements Document for Distributed Mission
Training. Washington, D.C., CAF 009-93-1-A.

U.S. Air Force, (2003, October 20). USAF Distributed
Mission Operations CONOPS White Paper.

	Embedded LVC Training: A Distributed Training Architecture for Live Platforms
	Abstract
	About The Authors
	Embedded LVC Training: A Distributed Training Architecture for Live Platforms
	Introduction
	Architecture
	Research Architecture Philosophy
	Hardware Architecture
	System Function Allocation

	Figure 1. System Architecture
	Deployment Considerations
	Software Architecture
	Training Function Software Architecture
	Currently Supported Functionality
	Training Software Implementation Pattern
	Distributed Simulation Over the Datalink

	Testing
	Bench Testing
	Flight Test Aircraft Integration

	Figure 2. Trainer cockpit with MFDs Installed
	Next Steps
	Flight Tests
	Future Functionality

	Conclusions
	References

