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ABSTRACT 

Given the reductions in Department of Defense budgets it is imperative that every dollar spent on training 
warfighters be used in a cost efficient manner.  One approach for cost effective training is distributed training 
exercises that include live, virtual, and constructive participants, but injecting the training functionality into live 
aircraft platforms is challenging.  Many of the current architectures and approaches for presenting the information to 
a pilot require modifications to the Operational Flight Program (OFP) software.  This is an expensive approach that 
can be challenging and time consuming to certify for flight safety. Ongoing research and development in embedding 
distributed training functionality within flight hardware has led to a new architecture that is presented in this paper.  
This research system demonstrates a partitioned architecture for embedded training that interfaces with the OFP 
through a single, standards based hook, allowing training functionality to be injected into flight displays in a manner 
with a credible path to certification.   
 
In addition to illustrating the architecture, this paper explains how the approach provides the capability for the end 
user to train with systems and sensors that are not physically present on the platform, such as the multiple radar 
simulators currently integrated. These onboard simulated sensors and systems consume pilot inputs as well as 
participant state data and interactions sent over a datalink, enabling embedded distributed training on live platforms 
in exercises that can contain combinations of live, virtual and constructive (LVC) participants.  The results of test 
bench experiments are provided, and the planned flight test experiments that will be conducted during LVC 
exercises are described.  Finally, the paper discusses research that will leverage the system, steps to further mature 
the proposed architecture, and the foreseeable challenges with fielding this approach to enabling embedded training. 
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INTRODUCTION 

In 1997 the U.S. Air Force identified key shortfalls in 
the ability to safely and affordably train aircrew, 
including safety considerations, mission complexity, 
airspace and range restrictions, and real world 
commitment and costs (U.S. Air Force, 1997).  Since 
then, various organizations have invested in 
technologies to mitigate these training gaps.  In 2003, 
the U.S. Air Force Distributed Mission Operations 
(DMO) Concept of Operations (CONOPS) identified 
the objective to “train warfighters as they expect to 
fight; maintain combat readiness at home or deployed; 
conduct mission rehearsal in an environment as 
operationally realistic as necessary; and provide 
support to operations” through a combination of real-
world operational systems, simulators, and constructive 
simulations (U.S. Air Force, 2003).  There are now 
several centers and networks currently online, 
including the Distributed Mission Operation Network, 
Air Reserve Component Network, Distributed Mission 
Operations Center and the Distributed Training 
Operations Center. Unfortunately, the reduction in 
Department of Defense budgets leading to reduced 
flying hours and the struggle of the existing ranges to 
support new combat capabilities mean that many 
aircrew are still unable to achieve training minimums.   

In fact, a 2011 RAND report clearly states that 
shrinking resources and expanding mission 
requirements are jeopardizing the ability to meet 
proficiency standards to accomplish wartime missions. 
The report also cautions that reducing the number of 
flight hours and increasing the number of simulated 
missions only shifts the expense to the simulator 
environment because the value (fidelity) of training 
must be maintained (Ausink, Taylor, Beigelow & 
Brancato, 2011).  Data compiled by RAND indicates 
that the high costs of training are largely driven by the 
need to field red forces and is further compounded by 
the need to ensure that these red forces are effective 
training adversaries.  For the F-22 alone, it is estimated 
that it would cost an additional $63 million for T-38 
aggressors, $132 million for F-16 aggressors or $593 
million for F-22 aggressors each year above what is 
currently spent just to meet the current training 

requirements (Ausink, Taylor, Beigelow & Brancato, 
2011).   

Experts see increased use of simulators; the DMO; and 
live, virtual, constructive (LVC) training as a means for 
reducing this gap; in addition the RAND report 
concludes that “in the long run, development of the 
LVC ability to inject simulated and constructive threats 
into live aircraft may be the only fiscally responsible 
approach to improving training.”  Whereas significant 
research in the last 4-6 years has focused on the 
integration challenges of LVC, such as datalinks and 
cross domain solutions for training with allied forces, 
the ability to achieve the “injection” of virtual and 
constructive entities into live platforms is still a 
relatively new challenge for the research community.  
The Combat Air Force LVC Pilot Project is currently 
in the process of making significant modifications to 
the Operations Flight Programs (OFPs) of several F-15 
and F/A-18 aircraft (Sidor, 2012).  While significant 
OFP upgrades will most likely prove to be an effective 
solution, it is likely that it will also prove to be an 
expensive solution when retrofitting currently fielded 
aircraft and re-certifying them for flight. 

Ongoing research and development in embedding 
distributed training functionality within flight hardware 
has led to an alternative approach for injecting virtual 
and constructive entities into live avionics displays.  
The research system demonstrates a partitioned 
architecture for embedded training that interfaces with 
the OFP through a single, Aeronautical Radio, 
Incorporated (ARINC) standards based hook.  It 
presents the capability to train with systems and 
sensors not physically present on the platform and the 
ability to fully participate in Live Virtual Constructive 
(LVC) training exercises. The details of this 
architecture are presented in this paper, along with a 
description of the research that leverages the system 
and the next steps to further mature the architecture. 

ARCHITECTURE 

Research Architecture Philosophy 

Several major goals influenced the research system 
design: 
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1. Graceful degradation during failure 
2. Minimal modification to OFP 
3. Federated architecture 

Safety of flight concerns present a need to separate the 
level of criticality of the research training functions as 
completely as possible from functions needed for basic 
aviation and navigation.  As these research functions 
are being developed without the full rigor of a formal 
certification process, care must be taken to ensure that 
failures of research functions cannot interfere with 
flight critical symbology.  To this end, a partitioned 
architecture was developed.  A clear separation of 
training function from flight safety function was made 
in software, in hardware, and in display formats. 

The training system architecture provides three levels 
of reversion for research aircraft safety of flight.  While 
in the training mode, large areas of the displays contain 
content from the research training function with very 
low level of criticality.  Safety of flight is ensured 
through reserved portions of the displays that are kept 
for primary flight instruments, and which are presented 
through a processing chain derived from a certified 
baseline. In the event of a software fault within the 
prototype training function, these reserved areas 
continue to operate normally while the remainder of 
the display is blanked.  In the event that a fault occurs, 
a dedicated line key selects a reversionary mode 
featuring a full screen standby format that is again 
derived from a certified baseline.  Finally, a standalone 
set of standby instruments is physically and electrically 
separated from the research displays within the cockpit. 

Two 6”x8” Multi-Function Displays (MFDs), mounted 
in portrait orientation, were used in the final 
architecture.  The selected displays are standard 
production units for a military rotary wing flight deck.  
Each MFD runs a research-tailored OFP which was 
derived with minimal modification from an existing 
certified flight deck.  The OFP application consists of a 
processing block which communicates with aircraft 
data sources and performs source selection and filtering 
for a minimal baseline set of flight parameters regarded 
critical, such as aircraft attitude, speeds, position, etc.  
A primary flight display format was taken from a 
certified baseline, again with minimal modification, 
and designated as a standby format.   When this format 
is active, system partitioning ensures that no training 
function symbology is permitted to be rendered 
anywhere on the MFD. 

The primary modification to the certified baseline 
occurred within the window management system.  
When the training system applications are active, a line 
select key on the standby format allows the pilot to 

select the training format.  When the training format is 
active, a portion of each MFD display area is reserved 
for a compressed version of the standby format, while 
the remainder of the display is available for 
presentation of training formats.   

As the training format symbology is generated by 
software with a lower level of criticality, partitioning 
within the rendering subsystem again ensures that no 
training function symbology is permitted to be 
rendered within the dedicated area of the screen 
reserved for the compressed standby format.  In 
addition, to prevent a hazardous or misleading 
presentation to the pilot, several restrictions on the 
training function applications are enforced through 
development practice.  No functions that present 
attitude data to the pilot are permitted to be 
implemented within the training format processing 
chain.  Speed, altitude and position data are permitted 
in the context of a training function, such as a target 
closure speed, or ownship position relative to bullseye 
on simulated radar, but presentation of this data is not 
allowed to be visually similar to a primary instrument. 

Hardware Architecture 

System Function Allocation 
Three major computing and display devices provide the 
computing resources necessary for the research flight 
deck.  Two MFDs provide a display surface and a high 
assurance data path for critical flight data, while a 
Dzus-mount mission processor and data transfer unit 
(MP/DTU) provides training functions.  The processing 
required to perform training functions on the research 
flight deck is hosted on a 7448 processor card installed 
within the MP/DTU.  Two additional mission 
processors are available, one within each MFD, for 
future expansion, and are currently untasked. This 
architecture is illustrated in Figure 1. System 
Architecture 

The entire system is installed in two configurations.  
First, the system can be operated in a simulator, where 
control inputs are provided to a flight model and 
outside viewing is provided by an image generator and 
screen.  Second, the system is installed in an Aero L-29 
Delfín jet trainer.  While not matching the performance 
of a modern fighter, its speed and dynamics still 
represent a stepping stone in that direction.  
Additionally, this aircraft provides an excellent cost per 
hour to operate. For this reason, it is being used in our 
research as a proxy for an introductory jet trainer.  For 
the purposes of this section, the live aircraft 
architecture will be illustrated.  Differences in the 
simulator configuration will be discussed later in the 
section titled “Testing”. 
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 Figure 1. System Architecture 

The system’s source for flight critical data is a 
lightweight Air Data Attitude Heading Reference 
System (ADAHRS) originally intended for Unmanned 
Aerial Vehicle (UAV) applications.  It produces an RS-
422 serial data stream that is bused to both MFDs, the 
training mission processor, and components of the 
research infrastructure performing data logger and a 
Heads-Up Display (HUD) symbology generator 
functions. The cost and form factor of conventional 
optics HUDs prohibit their use in the research aircraft.  
In its place, a daylight readable LCD display is 
installed at the center of the glareshield, and functions 
as a HUD repeater device. This repeater display is 
necessarily opaque and non-conformal. 

All interactions between the MFDs and the training 
application hosted on the Mission Processors are 
arbitrated by an ARINC Graphics Server (AGS) 
application which runs on the MFD Display Manager 
Partition on each MFD.  The AGS application is 
responsible to ensure partitioned access to the display 
surface itself.  Layer and window management within 
the AGS application and its configuration files 
provides the rules to ensure that the training function is 
properly partitioned from critical flight symbology; 

that the training application is allowed to present 
displays to the pilot when conditions are proper, and 
more importantly to ensure that training symbology can 
never corrupt or obscure symbology of higher level of 
criticality.  This single, open, ARINC 661 standard-
based hook into the OFP allows a flexible, lower cost 
path to integrating a training function as compared to a 
traditional tightly-coupled OFP integration, while the 
partitioning inherent in the system allows the training 
application to be developed to standards consistent 
with the lower criticality of  the training function. 

Within the cockpit, communications among the MFDs 
and the training mission processors is carried on a Dual 
Avionics System LAN (ASL), an ARINC 664 based 
Ethernet network.  As this Ethernet network carries 
only the remainder of the training data that is not 
critical for flight, it is permitted to contain a mix of 
hardened Avionics Ethernet and COTS devices. 

Training system control inputs are provided in two 
ways.  Each MFD’s display is surrounded on all four 
edges by a total of 30 line keys.  Of these keys, 21 are 
available for use with the training format when it is 
active.  Additionally, a simulated F/A-18 control grip 
and throttle are installed and an interface board 
converts the digital and analog signals from the Hands 
On Throttle and Stick (HOTAS) controls on these 
devices and provides switch state via the aircraft’s 
Ethernet network.   

Finally, a dedicated training datalink is connected via a 
second Ethernet interface on the MP/DTU.  As datalink 
requirements often vary depending on the training 
system and site, we have architected for datalink 
agility.  During the course of our research, we have 
integrated multiple datalink systems, operating on 
diverse radios, waveforms, bandwidths, and frequency 
bands, with link capabilities varying from full TCP/IP 
connectivity to narrowband, time-slice allocated, fixed-
sized packets.  These various datalinks have been 
integrated in the aircraft through one of two installation 
systems. First, Ethernet and power connections have 
been brought to an access cover location on the aircraft 
belly, allowing for installation of various datalinks and 
their matching antennas, each system pre-mounted on 
one of a set of interchangeable cover plates.  Second, a 
set of engineered launcher rail adaptors allow fitting of 
either single or paired training pods conforming to the 
AIM-9 form factor on the aircraft’s original under-
wing pylons. 

Deployment Considerations 
Given the research intent of our training system, the 
processing resources are permanently installed in 
embedded training form.  Migrating the mission 
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processing functions, datalink, and in some cases, 
ADAHRS function, to a removable embedded training 
pod may enable a more flexible application of this 
system architecture to other aircraft.  Additionally, in a 
system envisioned to provide training for multiple 
aircraft or roles, specialized hardware may be needed 
to accurately simulate systems used only in certain 
training curriculums.  In this case, allocation of that 
specialized hardware into only a limited set of training 
pods would allow more flexible use of training 
equipment.   

The use of a partitioned, standards-based ARINC 661 
remote application architecture to integrate the training 
applications into the OFP enables this functionality to 
be allocated to an external pod.  This contrasts with the 
allocation of the training function in a traditional 
tightly coupled OFP architecture, which could not be 
offloaded to a removable pod without risk to critical 
flight systems. 

Software Architecture 

Training Function Software Architecture 
The aircraft systems simulation is in the form of a 
simulation kernel that loads and manages execution of 
a configurable collection of plugins, termed Simulation 
Elements (SEs).  On the aircraft, each of these SEs 
simulates a device or system that would be present on 
the aircraft for which training is being performed.  For 
example, a Fire Control Computer SE maintains 
information about aircraft kinematics, master mode and 
submodes, targeting, steerpoints, etc.  A separate 
Weapons Inventory SE records the simulated stores 
loadout of the training aircraft.  Another pair of SEs 
perform computations for prelaunch munition cueing 
and postlaunch simulated munition flyout.  The 
modular nature of these Simulation Elements allows 
for selection of desired training function from a pool of 
available, interoperable training components.   

All of these individual SEs communicate by publishing 
and subscribing variables on a Virtual Data Network 
(VDN).  The VDN is the datastore for all training data 
that would be distributed on physical buses in the 
actual aircraft for which training is being performed.  
The VDN also carries all data about live, virtual, or 
constructive entities that have either been brought in 
from or will be published out onto the training datalink.  
All VDN state variables and distributed simulation data 
is available to SEs within the MP/DTU, as well as on 
the training Ethernet network through the use of a 
network VDN library. 

One noteworthy feature of this architecture is the 
mechanism used to integrate the live aircraft state data 

needed for the simulation.  All SEs used in the live 
aircraft are developed originally in a second instance of 
the system operated as a virtual simulator.  In this case, 
a number of SEs exist to provide the basic flying model 
of the aircraft itself.  For example a set of SEs which 
include Force and Moments, Equations of Motion, 
Aerodynamics, and Ground Model SEs simulate the 
virtual aircraft’s interactions with its environment, 
while another set including Hydraulic, Electrical, 
Engine, and Fuel System SEs simulate the state of the 
aircraft itself.  A data dictionary of standard bus values 
is populated from these SEs.   

When the training function is run in the live aircraft, all 
these SEs are configured out of the system, and in their 
place, an ADAHRS interface SE is run which parses 
the RS-422 data stream.  This data stream contains 
sensed state data and publishes the same set of 
variables that the above-mentioned SEs would publish.  
Thus, this SE is not so much a simulation element as a 
data bridge.  In this case, the difference is minimal.  In 
this way, both the data dictionary and the training SEs 
themselves are in fact identical between the virtual 
simulator and the live aircraft, with the only actual 
difference between the systems being the SEs used to 
either simulate or interface the aircraft state data.  In 
this way, the difficulty of maintaining identical 
behavior between the live and virtual training assets is 
dramatically reduced. 

Currently Supported Functionality 
A number of SEs simulate aircraft functions in the 
training flight deck.  As the primary areas of training 
research we have performed are close air support and 
air to air intercept operations, a matching set of 
simulation SEs have been implemented.  The training 
SEs are as follows: 

• FCC 
• Weapons Inventory 
• FaacCueingIntf 
• FaacFlyoutIntf 
• MFD 
• VmtsRadarIntf 
• HudIgInterface 
• MfdDisplay661 

FCC: The Fire Control Computer is a Model SE whose 
outputs are information about steerpoints, targets, 
master mode and submodes, and sensor of interest of 
the Flight Deck.  Its control inputs include such things 
as mode selection and HOTAS control switch inputs. 

Weapons Inventory: The Weapons Inventory is a 
Model SE whose outputs are information about 
remaining stores available for launch, selected 
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munition, and configurations of the specified 
munitions.  For example, air to ground munitions can 
be launched with high drag / low drag setting, varying 
number of munitions dropped in a ripple/salvo 
configuration, etc.  By contrast, air to air munitions 
record caged/uncaged, slave or boresight launch, etc.  
The processing function of the Weapons Inventory 
provides very generic weapon flyout and cueing 
models for situations when more specific SEs, such as 
the FaacCueingIntf and FaacFlyoutIntf described 
below, are not available. 

FaacCueingIntf: The FAAC Cueing Interface is a 
Model SE that is a wrapper around library code 
provided by FAAC Incorporated.  This is a 
reapplication of code traditionally incorporated into 
actual military OFPs, designed to provide prelaunch 
cueing in real operations (FAAC Inc.).  In this case, the 
true weapon models have been replaced with 
representative unclassified models. 

FaacFlyoutIntf: The FAAC Flyout Interface is a Model 
SE that provides a real time simulation of post-launch 
munition flyouts. This SE takes distributed simulation 
entity data from the VDN, which as discussed above, is 
consistent with the larger distributed simulation 
exercise, and provides that data to the flyout model in 
order to allow simulation of munition active guidance 
based on post-launch target maneuvering.  Post-launch 
datalink support messages are also simulated, if 
applicable.  This is again a wrapper around a third 
party library that is taken from a fielded non-drop 
range scoring system, with the high fidelity models 
replaced in our flight deck by representative 
unclassified models.  The output of this model is the 
position and behavior of the simulated munition during 
its flyout.  This data is pushed into the VDN entity 
datastore, and is distributed out onto the simulation 
datalink.  In this way, Plan View Display maps at the 
instructor station can visualize the flight of the 
munition, and targets can, if applicable to the mission 
scenario, respond with appropriate countering 
behaviors during the munitions’ flight. 

MFD: The MFD SE is a Model SE that maintains 
information about the internal state of the MFD.  
Control inputs for this SE come from the Bezel SE, and 
are processed to determine the MFD state, such as page 
selection, configurable display settings such as overlay 
layers or optional data blocks.  Two instances of this 
SE run, and model the internal state of the left and right 
MFDs.  . 

VmtsRadarIntf: The VMTS Radar Interface is a Model 
SE that simulates the function of an air-to-air fire 
control radar.  The SE collects entity data from the 

VDN and passes this data to a set of radar simulation 
processes also running on the Mission Processor, 
which simulate the navigation, ground mapping, and 
air to air fire control capabilities of a representative 
fielded fighter radar.  The output of those processes is a 
set processed of radar returns.  These returns are then 
published by the SE, and are used by the 
HudIgInterface and MFDDisplay to present targeting 
and situation awareness data to the pilot.  Control 
inputs to this SE include HOTAS control inputs and 
bezel key presses from the MFDs. 

HudIgInterface: The HUD Image Generator Interface 
is a View SE that collects aircraft, target, and other 
state data and generates a CIGI data stream which 
wraps an IG-specific symbology packet format.  These 
packets are then packaged and delivered to the IG, 
providing the information necessary to render the HUD 
display in a virtual simulator, or the HUD repeater 
display in the live aircraft simulator. 

MFDDisplay661: The MFD Display 661 SE is a View 
SE that collects information from a wide variety of 
Model SEs and generates an ARINC 661 data stream 
which drives the AGS in the physical MFD in the live 
flight deck.  In this case, due to the tight coupling of 
display and control data required by the ARINC 661 
protocol this SE also incorporates the behaviors of a 
Controller SE, by processing bezel presses, and 
generating control commands which are sent to other 
SEs.  A stores page allows display and selection of 
loaded munitions.  A Horizontal Situation Indicator 
(HSI) format is available, which includes a 
presentation of waypoints and navaids recorded in an 
airborne simulation navigation database.  Additionally, 
track files of datalinked blue force positions and sensed 
enemy positions collected from the VmtsRadarIntf are 
also provided on the HSI map.  A radar format is 
available, which presents a simulated fire control radar 
scope.  Finally, a training system status format is 
available, which displays real time information about 
the aircraft’s ADAHRS health, datalink connectivity, 
and other health monitoring information. 

Training Software Implementation Pattern 
The training functions are implemented in software as 
a model/view/controller pattern.  As an example, stores 
management will be detailed. 

The Model is the Weapons Inventory SE.  It loads a 
configuration file at startup that identifies the number 
of stores locations (pylons) on the simulated aircraft, 
and populates those stores with a configuration-
selected default loadout.  Through the duration of the 
flight, it manages changes to the inventory such as 
changes to the set of selected stores for launch, modes 
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and settings of munitions, the removal of launched 
munitions from wing stores, and tracking launched 
stores in an airborne pool until the end of their flights.  
All of these settings are recorded in VDN variables 
published by the Weapons Inventory SE. 

The View is a component of the MFD Display SE.  
The view presented by this SE collects and displays 
information from many models.  In this case the View 
of interest is the Stores Management System (SMS) 
page.  This SE subscribes to the variables published by 
the Weapons Inventory SE, and uses these variables to 
produce the display presented on the MFD.  In this 
case, the necessary data is in the form of a set of 
runtime parameters of ARINC 661 widgets.  The 
MP/DTU then sends these parameters via ARINC 661 
protocol to an ARINC Graphics Server (AGS) process 
which runs on the MFD.  With these parameters, along 
with a symbology definition file, the AGS has all the 
information necessary to render the visual presentation 
of the SMS page. 

The Controller is a component of the Bezel SE.  Bezel 
key presses are sent from the MFD in the return data of 
the ARINC 661 data stream.  However, the MFD itself 
knows only the number of a bezel key, and not its 
semantic meaning.  The Bezel SE subscribes to a 
number of variables, including the active page on the 
MFD, and information about bezel key labels, to turn 
this simple key number into a semantically meaningful 
request.  The Bezel SE then sends this request to the 
Weapons Inventory SE, completing the control loop. 

While these interfaces are internal to the software and 
are tailored to the specific functionality in question, the 
interfaces between model, view, and controller are well 
defined and provide a very clean partitioning of 
function.  Thus, it is possible to replace components of 
the pattern with alternate implementations depending 
on research needs.  For example, a replacement View 
implemented as an OpenGL window and a replacement 
Controller accepting input from a touch panel interface 
have been created, allowing a very lightweight but low 
fidelity virtual simulator to be added to the training 
system when higher participant count is needed. 

Finally, due to the segregation of processing 
responsibility in the Model/View/Controller pattern, it 
is possible to run multiple instances of those functions 
within a single simulator system for debugging, 
demonstration, or monitoring purposes.  For example, a 
virtual simulator might be configured to run the 
Weapons Inventory, MFD Display, and Bezel SEs as 
would normally be run in the live aircraft.  This 
provides display presentation and interaction to the 
pilot on the physical display installed in the virtual 

simulator’s main instrument panel.  In addition, a 
repeater display for an instructor station may be added 
simply by adding the aforementioned OpenGL display 
and touchscreen controller SEs to that configuration.  
Due to the segregation of functions, there is no 
software configuration overhead required to extend the 
system to provide these duplicate displays. 

Distributed Simulation Over the Datalink  
A final noteworthy component of the simulation 
architecture is the connection to the datalink.  In the 
live aircraft, a separate Ethernet interface is dedicated 
to the datalink.  This allows segregation of data flows 
within the flight deck from data flows intended for 
distribution.  The primary data flow over the datalink is 
information about the state of entities, munitions, and 
interactions in the distributed exercise, and the live 
aircraft’s mission processor communicates externally 
using either standard Distributed Interactive Simulation 
(DIS) datagrams or via a High Level Architecture 
(HLA) Run-Time Infrastructure (RTI).  The research 
architecture currently utilizes Real-time Platform 
Reference Federation Object Model (RPR-FOM) 1.0 
and HLA 1.3, but has the capability to support other 
FOMs and HLA standards.  For the purposes of these 
research and development efforts, the primary 
messages of interest are entity updates, fire and 
detonation interactions, emitter and jammer updates, 
and signals. 

As might be expected, the network infrastructure is 
complicated and relies on a combination of several 
protocols, bridges, and translators.  But an important 
feature of the overall architecture is that, once all these 
bridges and translators are navigated, there is a single, 
completely connected, HLA/DIS network connecting 
the various ground sites, which is bridged through the 
datalink, all the way to the flight deck itself.  In this 
way, the live aircraft is connected to the distributed 
exercise in a manner functionally indistinguishable 
from a traditional virtual simulator participant. 

The distributed simulation connection for the mission 
processor on the live aircraft is performed by an SE 
provided by the simulation environment infrastructure.  
This is not considered a “training” SE because it does 
not simulate an aircraft or OFP function.  This SE is in 
essence a protocol bridge that cross-fills between the 
VDN entity list and the distributed simulation protocol.  
Depending on the environment needed, this SE 
interoperates with DIS or HLA.  A TENA interface is 
also available but has not yet been used in a training 
study.  Three separate SEs provide connection to these 
three protocols, but the SEs share a large pool of 
common source code, differing only in the protocol 
interface portion itself. 
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Incoming entity data from the exercise is processed by 
this SE, and an equivalent persistent entity is created in 
the VDN datastore.  Subsequent data is then matched 
up against the existing entity in the VDN, and 
incremental updates are applied.  Conversely, local 
entities created by the exercise, such as ownship 
position or locally simulated munitions in flight are 
identified, correlated, and published into the distributed 
simulation exercise by this SE.  Equivalent paths are in 
place for Emitters, signals and other distributed entity 
persistent objects.    

External events such as fire, detonation, collision, and 
simulation control are received from the distributed 
federation and are in turn converted to a common 
format and broadcast to various SEs within the 
exercise, via a configurable distribution list.  SEs can 
also publish a locally generated event, which is 
likewise distributed to interested local SEs, and then 
converted and forwarded to the datalink. 

When the simulator is used as a virtual participant, the 
simulator is directly connected to the larger distributed 
simulation exercise and participates as a standard HLA 
or DIS player.  Likewise, in the live aircraft, the 
network between the Mission Processor and airborne 
interface side of the datalink also carries HLA or DIS 
traffic.  Due to the ready access to this standard 
protocol network within the live flight deck, it is 
possible to easily embed additional training functions, 
such as embedded Semi-Automated Forces (SAF) or 
Plan View Display for instructor/safety pilot use, into 
the live trainer.   

Where the datalink connects to the live aircraft’s 
airborne DIS/HLA network, however, the data is 
bridged through a protocol translator application that 
converts the standard distributed simulation data into a 
set of over-the-air packets that is tailored for the 
specific datalink and waveform selected. 

Depending on the features and/or constraints of the 
installed datalink, these protocol translator applications 
perform different functions.  For example, one 
application was implemented to pair with a time-sliced 
datalink with a fixed packet size limit, and provided 
message prioritization and rate limiting, and packet 
fragmentation and reassembly.  By contrast, a different 
application was built to pair with a datalink without 
any intrinsic provision in its protocol for reliable or 
near-reliable delivery.  This application provided a 
buffer for storage and retransmission of a designated 
subset of messages which demanded reliable delivery. 

At the ground side of the datalink, a matching instance 
of the same protocol translator application bridges the 
tailored datalink protocol back to a standard protocol 

used in distributed simulation.  This is then distributed 
over the exercise LAN or WAN, and is sometimes 
converted to other distributed simulation protocols 
using a broker application.  This distributed simulation 
networking is performed using methods well known 
within the field. 

TESTING 

Bench Testing 

The laboratory environment consisted of an identical 
set of display hardware to the flight test aircraft, with 
accommodations for simulation of the sensors normally 
present on the aircraft. A simulated GPS/INS was 
created to feed the MFD application position and 
attitude information. Also, the training simulation 
environment was setup to connect to the MFD over the 
ARINC 661 protocol using the same Internet Protocol 
(IP) ports and addresses as equipment on the aircraft. 
In this way the laboratory environment was identical to 
the aircraft, and no changes to software were required 
when moving between locations.  

Bench testing consisted of engineering verification of 
ARINC 661 pages displayed on the MFD. Functional 
unit tests, including connectivity, configuration, and 
filtering tests, were conducted utilizing the simulation 
environment in the lab.  The MFD pages were 
exercised throughout aircraft operating and 
performance limits, as well loading of the training 
functionality with LVC entities and data.   

The tests verified that the user can enter and exit the 
training mode and that the display reversions occurred 
properly during failure situations. It determined that the 
ADAHRS interface SE was correctly parsing the 
simulated RS-422 data stream to drive the standby 
instruments.  The tests also verified that the training 
functionality of the various pages reacted to control 
inputs. The stores page displayed the correct munitions 
and allowed munitions to be selected and fired.  The 
HSI page presented the waypoints and navaids for the 
preplanned route and the track files for other 
networked participants.  The radar modes function 
correctly, allowing the radar page to present targeting 
information to the pilot that can be used to lock 
constructive participants in the distributed training 
exercise.   

Flight Test Aircraft Integration 

As the existing aircraft instruments were removed to 
provide room for the research MFDs, an additional 
dissimilar standby instrument system is installed in the 
experimental cockpit, and has no data connection in 
common with the experimental displays.  Power for 
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this standby system is common only at the aircraft bus 
level, and an additional internal battery provides 
continued operation in the case of loss of bus power. 

A simulated F-18 control grip and throttle grip was 
fitted in place of the aircraft’s original stick grip and 
throttle grip, through engineered adapters that mounted 
the grips to the aircraft’s control column and throttle 
arm in place of the aircraft’s original equipment.  As 
the flight test aircraft is a single-engine aircraft, the left 
and right throttle grip of the F-18 controls were 
mounted together to a single bracket and do not move 
independently.  Existing aircraft switches on the stick 
and throttle were relocated or assigned to equivalent 
HOTAS function switches on the training grips.  The 
training flight deck is show in Figure 2. 

 

Figure 2. Trainer cockpit with MFDs Installed 

A debug connector was installed on the main 
instrument panel that allows diagnostic connection to 
the aircraft systems while on the ground.  Connections 
available include serial debug ports on the MFDs, 
connection to the training system Ethernet network, 
and strapping connections required to enable dataload.  
An interface cable can be attached when the aircraft is 
on the ground, and when the aircraft is airborne, the 
connector is covered by a dust cap.  In this 
configuration, the strapping pins are open, and dataload 
is inhibited. 

After completing installation of the hardware into the 
research aircraft an initial flight test was conducted, 
attempting to provide engineering verification of basic 
avionics functionality and basic training functionality.  
The test verified that the pilot was able enter and exit 

the training mode and that the display reversions 
occurred properly during failure situations.  It verified 
that the training functionality in several of the pages 
reacted to control inputs. The stores page displayed the 
correct munitions and allowed munitions to be selected 
and fired.  The HSI page presented the waypoints and 
navaids for the preplanned route.  Since there were no 
additional participants, no track files were displayed 
and the test could not verify that targeting capabilities 
were functioning.  The pilot was able to enter the radar 
page and determine that it was running.    

Due to several circumstances, the ADAHRS did not 
initialize correctly and could not attain GPS lock.  
While the test indicated that the RS-422 data was being 
parsed correctly, the lack of GPS lock meant the full 
functionality of the positional displays could not be 
verified. 

NEXT STEPS 

Flight Tests 

Once further verification of the basic avionics and 
training functionality is complete, flight tests will be 
extended to incorporate LVC entities.  Phase 1 will 
consist of a single live aircraft with virtual wingmen 
against a combination of virtual and constructive 
aggressor forces in air-to-air intercept scenarios, as 
well as constructive targets and additional participants 
in air-to-ground close air support scenarios.  Phase 2 
will add additional virtual and constructive entities as 
well as an additional live wingman, again in both air-
to-air intercept and air-to-ground close air support 
scenarios.  The potential third phase will examine 
incorporating the second live aircraft as a red force in 
air-to-air engagement scenarios, pending a full risk 
assessment.  The flight test will be conducted under 
internal funding sources.  Once the phased assessment 
of the LVC capabilities is complete, the architecture 
will be utilized to examine the human factors 
implications of pilots participating in these distributed 
training exercises. 

Future Functionality 

The first area of functionality due for future integration 
is a more complete Electronic Warfare (EW) and Radar 
Warning Receiver (RWR) system.  The current system 
lacks any meaningful RWR capabilities.  Integration of 
an existing RWR simulator is planned to address this 
gap.  Existing VDN emitter data will be used as an 
input for this model. 

With a longer outlook, the modular, “plug-in” nature of 
the simulation environment itself supports the concept 
of selecting training functions for a specific student 
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based on a “menu” of available simulation capabilities.  
As an example, different radar simulators could be 
integrated, such that a pilot training for transition to a 
naval aviation interceptor role might use the Virtual 
Mission Training System (VMTS) baseline radar, 
which is very similar to an F-18 radar, whereas a pilot 
training for transition to the F-35 might train with a 
radar simulator representative of the capabilities of that 
particular aircraft.  This possibility of tailoring the 
flight deck on a per-curriculum basis while using a 
baseline pool of avionics and training aircraft 
represents a dramatic change from traditional flight 
training. 

Additionally, sensors and missions widely removed 
from the currently implemented training needs may 
also be readily inserted into the flight deck.  Examples 
include forward looking infrared (FLIR) or Synthetic 
Aperture Radar (SAR) sensor simulation, which can be 
provided as a merged video input to the MFDs, or 
substitution of different model SEs, in order to provide 
training for dramatically different roles such as Anti-
Submarine Warfare or Electronic Warfare.  

CONCLUSIONS 

This paper presented a new architecture for injecting 
virtual and constructive entities into live aircraft. For 
platforms where the Operational Flight Program (OFP) 
development is not complete, the proposed architecture 
could be easily accommodated.  Retrofitting currently 
fielded platforms to accommodate the architecture 
presents more of a problem, as it would require the 
cooperation of the aircraft manufacturer that originally 
developed the OFP.   

The architecture provides the capability to train with 
systems and sensors not physically present on the 
platform. It is capable of utilizing pilot inputs as well 
as participant state data and interactions sent over a 
datalink, enabling embedded distributed training on 
live platforms in LVC exercises.  The system has been 
installed in an experimental aircraft, with flight tests 
planned for the next several months.  The architecture 
was developed under internal funds, and the system 
verification flight tests will also be conducted using 
internal funding resources.  
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